Passive sensory processing is often insufficient to guide biological organisms in complex environments. Rather, behaviourally relevant information can be accessed by performing so-called epistemic actions that explicitly aim at unveiling hidden information. However, it is still unclear how an autonomous agent can learn epistemic actions and how it can use them adaptively. In this work, we propose a definition of epistemic actions for POMDPs that derive from their characterizations in cognitive science and classical planning literature. We give theoretical insights about how partial observability and epistemic actions can affct the learning process and performance in the extreme conditions of model-free and memory-free reinforcement learning where hidden information cannot be represented. We finally investigate these concepts using an integrated eye-arm neural architecture for robot control, which can use its effctors to execute epistemic actions and can exploit the actively gathered information to effiently accomplish a seek-and-reach task.
Learning epistemic actions in model-free memory-free reinforcement learning: experiments with a neuro-robotic model
Publication type:
Contributo in atti di convegno
Source:
Second International Conference, Living Machines '13., pp. 191–203, London, UK, July 29 - August 2 2013
Date:
2013
Resource Identifier:
http://www.cnr.it/prodotto/i/313620
https://dx.doi.org/10.1007/978-3-642-39802-5_17
info:doi:10.1007/978-3-642-39802-5_17
http://dx.doi.org/10.1007/978-3-642-39802-5_17
urn:isbn:978-3-642-39801-8
Language:
Eng