Mereotopology is an approach to modeling space that allows to formalize human spatial intuition without reference to points. A predominant formal theory in this area is the Regions Connection Calculus (RCC) introduced in 1992. RCC has an original fault: it relies on the notion of (Euclidean) point for the interpretation of its primitive, i.e., the connection relation C. In this paper we show that in the natural structures for mereotopology, RCC is a theory of manifolds in disguise. It follows that RCC can be reformulated without reference to any notion of point both at the syntactic and at the semantic levels.
Publication type:
Contributo in atti di convegno
Publisher:
IOS Press, Amsterdam, NLD
Source:
21st European Conference on Artificial Intelligence (ECAI 2014), pp. 129–134, Prague, 18-22 Agosto 2014
Date:
2014
Resource Identifier:
http://www.cnr.it/prodotto/i/320187
https://dx.doi.org/10.3233/978-1-61499-419-0-129
info:doi:10.3233/978-1-61499-419-0-129
urn:isbn:978-1-61499-418-3
Language:
Eng