Training sets of images for object recognition are the pillars on which classifiers base their performances. We have built a framework to support the entire process of image and textual retrieval from search engines, which, giving an input keyword, performs a statistical and a semantic analysis and automatically builds a training set. We have focused our attention on textual information and we have explored, with several experiments, three different approaches to automatically discriminate between positive and negative images: keyword position, tag frequency and semantic analysis. We present the best results for each approach.
Publication type:
Contributo in atti di convegno
Publisher:
Springer, Berlin , Germania
Source:
Computer Vision - ECCV Workshops, pp. 309–322, Zurich, 07/09/2014
Date:
2015
Resource Identifier:
http://www.cnr.it/prodotto/i/342946
https://dx.doi.org/10.1007/978-3-319-16181-5_22
info:doi:10.1007/978-3-319-16181-5_22
urn:isbn:978-3-319-16180-8
Language:
Eng