We explored the role of modularity as a means to improve evolvability in populations of adaptive agents. We performed two sets of artificial life experiments. In the first, the adaptive agents were neural networks controlling the behavior of simulated garbage collecting robots, where modularity referred to the networks architectural organization and evolvability to the capacity of the population to adapt to environmental changes measured by the agents performance. In the second, the agents were programs that control the changes in network's synaptic weights (learning algorithms), the modules were emerged clusters of symbols with a well defined function and evolvability was measured through the level of symbol diversity across programs. We found that the presence of modularity (either imposed by construction or as an emergent property in a favorable environment) is strongly correlated to the presence of very fit agents adapting effectively to environmental changes. In the case of learning algorithms we also observed that character diversity and modularity are also strongly correlated quantities. © 2014 Springer Science+Business Media New York.
Adaptive Agents in Changing Environments, the Role of Modularity
Tipo Pubblicazione:
Articolo
Publisher:
D facto s.a.., Bruxelles, Belgio
Source:
Neural Processing Letters 42 (2015): 257–274. doi:10.1007/s11063-014-9355-8
info:cnr-pdr/source/autori:Calabretta, Raffaele; Neirotti, Juan Pablo/titolo:Adaptive Agents in Changing Environments, the Role of Modularity/doi:10.1007/s11063-014-9355-8/rivista:Neural Processing Letters/anno:2015/pagina_da:257/pagina_a:274/intervallo_p
Date:
2015
Resource Identifier:
http://www.cnr.it/prodotto/i/296664
https://dx.doi.org/10.1007/s11063-014-9355-8
info:doi:10.1007/s11063-014-9355-8
http://www.scopus.com/record/display.url?eid=2-s2.0-84901556426&origin=inward
Language:
Eng