Ecological active vision: four bio-inspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot

Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture ("BITPIC") to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob "objects." The results show that the architecture solves the problems, and hence the tasks, very efficiently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions.

Tipo Pubblicazione: 
Articolo
Author or Creator: 
Ognibene Dimitri
Baldassare Gianluca
Publisher: 
IEEE,, Piscataway, NJ , Stati Uniti d'America
Source: 
IEEE transactions on autonomous mental development (Print) 7 (2015): 3–25. doi:10.1109/TAMD.2014.2341351
info:cnr-pdr/source/autori:Ognibene Dimitri, Baldassare Gianluca/titolo:Ecological active vision: four bio-inspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot/doi:10.1109/TAMD.2014.2341351/rivis
Date: 
2015
Resource Identifier: 
http://www.cnr.it/prodotto/i/327277
https://dx.doi.org/10.1109/TAMD.2014.2341351
info:doi:10.1109/TAMD.2014.2341351
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6863681
Language: 
Eng
ISTC Author: