LCBM: a fast and lightweight collaborative filtering algorithm for binary ratings

In the last ten years, recommendation systems evolved from novelties to powerful business tools, deeply changing the internet industry. Collaborative Filtering (CF) represents a widely adopted strategy today to build recommendation engines. The most advanced CF techniques (i.e. those based on matrix factorization) provide high quality results, but may incur prohibitive computational costs when applied to very large data sets.

Tipo Pubblicazione: 
Articolo
Author or Creator: 
Petroni, F.
Querzoni, L.
Beraldi, R.
Paolucci, M.
Publisher: 
Elsevier North Holland], [New York,, Stati Uniti d'America
Source: 
The Journal of systems and software 117 (2016): 583–594. doi:10.1016/j.jss.2016.04.062
info:cnr-pdr/source/autori:Petroni, F.; Querzoni, L.; Beraldi, R.; Paolucci, M./titolo:LCBM: a fast and lightweight collaborative filtering algorithm for binary ratings/doi:10.1016/j.jss.2016.04.062/rivista:The Journal of systems and software/anno:2016/pa
Date: 
2016
Resource Identifier: 
http://www.cnr.it/prodotto/i/366562
https://dx.doi.org/10.1016/j.jss.2016.04.062
info:doi:10.1016/j.jss.2016.04.062
Language: 
Eng
ISTC Author: 
Ritratto di Mario Paolucci
Real name: